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Example: Network Routing
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® n = 10 players want to travel from s to ¢

® Each edge e is labeled with its (flow-dependent)
delay function d.(x)
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Question: What are the pure Nash equilibria here?
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® n = 10 players want to travel from s to ¢

® Each edge e is labeled with its (flow-dependent)
delay function d.(x)
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Question: What are the pure Nash equilibria here? (10,0)
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Example: Network Routing

X

10
® n = 10 players want to travel from s to ¢

® Each edge e is labeled with its (flow-dependent)
delay function d.(x)

Question: What are the pure Nash equilibria here? (10,0), (9,1)
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Example: The El Farol Bar Problem
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Example: The El Farol Bar Problem

have identical preferences:
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100 people consider visiting the E/ Farol Bar on a Thursday night. They all
—= |f 60 or more people show up, it's nicer to be at home.

—® |f fewer than 60 people show up, it's nicer to be at the bar.
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Example: The El Farol Bar Problem

have identical preferences:

100 people consider visiting the E/ Farol Bar on a Thursday night. They all
® |f 60 or more people show up, it's nicer to be at home.

e |f fewer than 60 people show up, it's nicer to be at the bar.
Georgios Amanatidis

Question: What are the pure Nash equilibria here?
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Example: The El Farol Bar Problem

100 people consider visiting the E/ Farol Bar on a Thursday night. They all
have identical preferences:

® |f 60 or more people show up, it's nicer to be at home.

e |f fewer than 60 people show up, it's nicer to be at the bar.

Question: What are the pure Nash equilibria here? 59 people at the bar.
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Example: Congestion Game
A congestion game is a tuple (N, R, A, d), where
e N ={1,...,n} is a finite set of players

® R={1,...,m} is a finite set of resources

® A=Ay x---x A, is a finite set of action profiles a = (a1,
with A; C 27\ {()} being the set of actions available to player i
°od= (dl, Ce

cyay),

,dm) is a vector of delay functions d,. : N — R.
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Example: Congestion Game
A congestion game is a tuple (N, R, A, d), where
e N ={1,...,n} is a finite set of players

® R={1,...,m} is a finite set of resources

® A=Ay x---x A, is a finite set of action profiles a = (a1,
with A; C 27\ {()} being the set of actions available to player i
°od= (dl, Ce

cy ),

,dm) is a vector of delay functions d,. : N — R.
Goal: player i € N chooses a

subset of resourcet A;
Given an action profile a = (ay,

,Gy), the cost of player i is
@ =Y 0 ulE) whew mi@=llieN  rea)
ci(a) = ~(nf(a)) where n.(a)=|{i : T € a;}|
rEai\g
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Example: Congestion Game
A congestion game is a tuple (N, R, A, d), where
e N ={1,...,n} is a finite set of players

® R={1,...,m} is a finite set of resources

® A=Ay x---x A, is a finite set of action profiles a = (a1,
with A; C 27\ {()} being the set of actions available to player i
°od= (dl, Ce

cy ),

,dm) is a vector of delay functions d,. : N — R.

Goal: player i € N chooses a subset of resources a; € A;
Given an action profile a = (aq,

,Gy), the cost of player i is

ci(a) = Z dy(n-(a)) where n.(a)=1{i e N : rea}.

rea;

Note: u;(a) = —c;(a) for every i here.
\/
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Modelling the Examples

Congestion Game:
® players N = {1,2,...,10}
® resources R = {1,/}

® action spaces A; = {{1},{}}} representing the two routes
® delay functions dy :  +— 2 and d| : x — 10
—
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Modelling the Examples
Congestion Game:
® players N = {1,2,...,10}

® resources R = {1,/}

® action spaces A; = {{1},{}}} representing the two routes
® delay functions dy : z +— 2 and d} : x — 10

El Farol Bar Problem:
® players N = {1, 2,

...,100}
® resources R = {Y, @, &y,

A5 0
oo, B0}
® action spaces A; = {{Y},{#&}}
® delay functions dy : x

and dg, : x —

1
2
~
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Modelling the Examples

Congestion Game:
® players N = {1,2,...,10}
® resources R = {1,/}

® action spaces A; = {{1},{}}} representing the two routes
® delay functions dy : z +— 2 and d} : x — 10

El Farol Bar Problem:

® players N = {1,2,...,100}

® resources R = {Y, @&, &, ... &}
® action spaces A; = {{Y},{#&}}

® delay functions dy :  — 1,360 and dg, : T — %

Remark: neither example uses the full generality of congestion games
(actions correspond to singleton resource sets only)
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Existence of Pure Nash Equilibria
Good news:

Theorem (Rosenthal, 1973)

Every congestion game has at least one pure Nash equilibrium.

national Journal of Game Theory, 2(1):65-67, 1973.

Georgios Amanatidis

R.W. Rosenthal. A Class of Games Possessing Pure-Strategy Nash Equilibria. Inter-
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Inefficiency of Equilibria
Prisoner’s Dilemma: Nash equilibria might be suboptimall!
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Inefficiency of Equilibria
Prisoner’s Dilemma: Nash equilibria might be suboptimall!

Question: Can we quantify how “bad” Nash equilibria are?
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Prisoner’s Dilemma: Nash equilibria might be suboptimall!
Question: Can we quantify how “bad” Nash equilibria are?
Social cost: define the social cost of strategy profile a as

SC(a) =) ci(a)

i€EN

Georgios Amanatidis

[m]

Social Networks & Online Markets 2020

=

14



Prisoner’s Dilemma: Nash equilibria might be suboptimall!
Question: Can we quantify how “bad” Nash equilibria are?
Social cost: define the social cost of strategy profile a as
)

SC(a) =) ci(a)

i€EN

— let(a* Jbe a strategy profile minimizing SC(-) (social optimum)
— a* IS best possible outcome if one could coordinate the players
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Prisoner’s Dilemma: Nash equilibria might be suboptimall!
Question: Can we quantify how “bad” Nash equilibria are?
Social cost: define the social cost of strategy profile a as

SC(a) =) ci(a)

i€EN

— let @* be a strategy profile minimizing SC(-) (social optimum)
— a* is best possible outcome if one could coordinate the players

Georgios Amanatidis

Note: consider social welfare SW = )" u; for utility maximizing players
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Inefficiency of Equilibria

Prisoner’s Dilemma: Nash equilibria might be suboptimall!
Question: Can we quantify how “bad” Nash equilibria are?

Social cost: define the social cost of strategy profile a as
5C(a) = Y ()
ieN
— let @* be a strategy profile minimizing SC(-) (social optimum)

— a* is best possible outcome if one could coordinate the players

Note: consider social welfare SW = )" u; for utility maximizing players

Idea: measure worst case loss in social cost due to lack of coordination

(8
POA = achNE SC(a*)

— termed the price of anarchy by Koutsoupias & Papadimitriou (1999)
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Network Routing Games

n =10
di(z) = Si={1,1}

di(fﬂ) =10
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Network Routing Games

n =10
di(z) = Si={1,1}
(s (£

di(az) =10

social optimum: SC(s*) =5-5+5-10 @

Social Networks & Online Markets 2020


Georgios Amanatidis
Pencil


Network Routing Games

n =10
di(z) = Si={1,1}
(s (£

di(fﬂ) =10

SC(s) _ 100 _ 4
SC(s*) — 7 — 3 .

price of anarchy:
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Price of Anarchy for Congestion Games

Good news:

—>e POA is independent of the network structure
® POA depe

s on the class of delay functions

— POA =\3 [for affine functions (proof on next slide) O‘c (XN
— POA = J(1) for quadratic, cubic, ... functions 1l
= _—

A X+ b

(.
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Price of Anarchy for Congestion Games

Good news:

® POA de

® POA is independent of the network structure
pends on the class of delay functions
— POA {D?

— POA =0(1

2 for affine functions (proof on next slide)
) for quadratic, cubic, ... functions
Bad news:

® POA increases with the “steepness” of delay functions
Ain general: unbounded!

—_—
® even worse: unbounded for practically relevant delay functions
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POA for Congestion Games
Theorem

The price of anarchy of congestion games with affine delay functions is %

See proof at the end!

Georgios Amanatidis

[m]

F
Social Networks & Online Markets 2020



Tight Example

Instance:

°N =3

® R = R1U Ry, where Ry = {hi,ho, hs} and Ry = {g1, 92,93}
® delay function d,.(z) = x for every r € R

® each player i has two strategies: {h;,¢;} and {h;_1,hit1,9i11}
(modulo 3).
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Tight Example

Instance:

°N =3

® R = R1U Ry, where Ry = {hi,ho, hs} and Ry = {g1, 92,93}
® delay function d,.(z) = x for every r € R

® each player i has two strategies: {h;,¢;} and {h;_1,hit1,9i11}
(modulo 3).

Social optimum: every player selects his first strategy: SC(a*) =6
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Tight Example

Instance:

°N =3

® R = R1U Ry, where Ry = {hi,ho, hs} and Ry = {g1, 92,93}
® delay function d,.(z) = x for every r € R

® each player i has two strategies: {h;,¢;} and {h;_1,hit1,9i11}
(modulo 3).

Social optimum: every player selects his first strategy: SC(a*) =6

Nash equilibrium: every player chooses his second strategy:
SC(a)=>,ci(a)=3-5=15

=] = = DQAC
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Unbounded POA

In general, POA for congestion games is unbounded.
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Unbounded POA

In general, POA for congestion games is unbounded.

Question: Can we improve the POA?
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Unbounded POA

In general, POA for congestion games is unbounded.

Question: Can we improve the POA?

— natural idea: infrastructure improvement (add new edges)
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Braess Paradox

n =10
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Braess Paradox

n =10
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Braess Paradox

player’'s delay: 15
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Braess Paradox

n =10
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Braess Paradox

n =10
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Braess Paradox
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€he New ork Times

December 25, 1990

What if They Closed 42d Street and Nobody Noticed?

By GINA KOLATA

ON Earth Day this year, New York City's Transportation Commissioner decided to close 42d Street,
which as every New Yorker knows is always congested. "Many predicted it would be doomsday," said
the Commissioner, Lucius J. Riccio. "You didn't need to be a rocket scientist or have a sophisticated
computer queuing model to see that this could have been a major problem."

But to everyone's surprise, Earth Day generated no historic traffic jam. Traffic flow actually improved
when 42d Street was closed.

To mathematicians, this may be a real-world example of Braess's paradox, a statistical theorem that
holds that when a network of streets is already jammed with vehicles, adding a new street can make
traffic flow even more slowly. Seeking Out a New Street

The reason is that in crowded conditions, drivers will pile into a new street, clogging both it and the
streets that provide access to it. By the same token, removing a major thoroughfare may actually ease
congestion on the streets that normally provide access to it. And because other major streets are already
overcrowded, diverting still more traffic to them may not make much difference.
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But to everyone's surprise, Earth Day generated no historic traffic jam. Traffic flow actually improved

when 42d Street was closed.

To mathematicians, this may be a real-world example of Braess's paradox, a statistical theorem that
holds that when a network of streets is already jammed with vehicles, adding a new street can make
traffic flow even more slowly. Seeking Out a New Street

The reason is that in crowded conditions, drivers will pile into a new street, clogging both it and the
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€he New York Times

December 25, 1990

Dr. Joel E. Cohen, a mathematician at Rockefeller University in New York, says the paradox does not
always hold; each traffic network must be analyzed on its own. When a network is not congested, adding
a new street will indeed make things better. But in the case of congested networks, adding a new street
probably makes things worse at least half the time, mathematicians say.

Dr. Cohen and Dr. Frank P. Kelly of the University of Cambridge in England published the most recent
analysis of the traffic paradox in the current issue of The Journal of Applied Probability. In their paper,
they show that the paradox occurs when the traffic is described by a sophisticated statistical model.
Previous work had used what Dr. Cohen describes as an overly simple and less realistic model.

The traffic paradox was first described in 1968 by Dr. Dietrich Braess of the Institute for Numerical and
Applied Mathematics in Munster, Germany. He found that when one street was added to a simple four-
street network, all the vehicles took longer to get through.

Dr. Braess's result was "very surprising," said Dr. Richard Steinberg of A.T.&T.'s Bell Laboratories in
Holmdel, N.J. Dr. Steinberg and colleagues studied how often the paradox would hold true, and
determined in 1983 that "it is just as likely to occur as not."

He and his colleagues also turned up a paradox of their own: that in some situations, "when you add
more delays along a route, more people use it." Honk, Honk

Dr. Cohen and Dr. Kelly have now examined traffic networks with a sophisticated analytic method
known as queuing theory, which describes traffic jams in terms of vehicles lining up on the streets. They
found a simple traffic network in which adding a street increased travel time.
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€he New York Times

December 25, 1990

added, "My intuition is that it must happen a lot." He finds support for his intuition from game theory,
which says that if everyone in a game acts selfishly, everyone suffers. The traffic jam is analogous to
such a game, Dr. Cohen said.

He cited a German paper, published in 1969, reporting that the City of Stuttgart had tried to ease
downtown traffic by adding a new street. But congestion only got worse, and so, in desperation, the
authorities closed the street. Traffic flow improved.

New York's Transportation Commissioner, Mr. Riccio, has a doctoral degree himself (in engineering,
from Lehigh University), and he said he favored using mathematical models to try to improve traffic

flow. "I believe in these models," he said, and added that he would welcome a call from Dr. Cohen to
discuss how his work could apply to New York City's daunting traffic problems.



€he New York Times

December 25, 1990

added, "My intuition is that it must happen a lot." He finds support for his intuition from game theory,
which says that if everyone in a game acts selfishly, everyone suffers. The traffic jam is analogous to
such a game, Dr. Cohen said.

He cited a German paper, published in 1969, reporting that the City of Stuttgart had tried to ease
downtown traffic by adding a new street. But congestion only got worse, and so, in desperation, the
authorities closed the street. Traffic flow improved.

New York's Transportation Commissioner, Mr. Riccio, has a doctoral degree himself (in engineering,
from Lehigh University), and he said he favored using mathematical models to try to improve traffic

flow. "I believe in these models," he said, and added that he would welcome a call from Dr. Cohen to
discuss how his work could apply to New York City's daunting traffic problems.


Georgios Amanatidis
Pencil


Price of Anarchy

So: In a congestion game, the natural better-response dynamics will always
lead us to a pure NE. Nice. But: How good is that equilibrium?
Recall our traffic congestion example:

T

10 people overall
@ top delay = # on route
bottom delay = 10 minutes
10

If 2 < 10 players use top route, social welfare (sum of utilities) is:
sw(r) = —[z-z+(10—2)-10] = —[z*— 10z + 100]

This function is maximal for z = 5 and minimal for x = 0 and x = 10.
In equilibrium, 9 or 10 people will use the bottom route (10 is worse).
The so-called price of anarchy of this game is: =20 — =100 _ 4

sw(5) — =75 — 3
Thus: not perfect, but not too bad either (for this example).

O = = DQAC
Social Networks & Online Markets 2020 22

Georgios Amanatidis



Braess’ Paradox

Something to think about. 10 people have to get from s to t:

i 0 @ P\Q A
10 @/x
If the delay-free link from u to v is not present:

® |n equilibrium, 5 people will use the top route s—u—t and 5 people the
bottom route s—v—t. Everyone will take 15 minutes.

Now, if we add the delay-free link from u to v, this happens:

® In the worst equilibrium, everyone will take the route s—u—v—t and take
20 minutes! (Other equilibria are only slightly better.)
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Price of Anarchy for
Linear/Affine Congestion Games

Based on slides by A. Voudouris



A general technique for PoA bounds

O ———

- W/ pwe NE

Recall that a state s = (s4, ..., S;,) is an equilibrium if for each player i
the strategy s; minimizes her personal cost, given the strategies of
the other players ¢

S—i = (Sl: w0 Si—1 Sit+ 1 '"rSn) S = (SL ) 5'])

s is an equilibrium if for each player i, the strategy s; is such that
cost;(y,s_;) is minimized for y = s;

Alternatively, for every possible strategy y of player i:
cost;(s;,5_;) < cost;(y,s_;)

We have one such inequality for every player



A general technique for PoA bounds
* By adding these inequalities, we get
SC(s) = cost;(s;,s_;) < Costi(yt,s_i)

* We can get an upper bound of A on the price of anarchy if there exists
a strategy y; for every player i such that

Z cost; (yi,s_;) < A1-SC(Sppr)

IEN

* The goalis to pinpoint the strategy y; for each player i, which will
allow us to prove an inequality like this



Linear congestion games: Po
Oﬁ)\q\? - N, T =
A

o/_’Q

< l

Theorem e
The price of anarchy of linear congestion games is at most 5/2

Wt §= (51, .--Sp) is an equilibrium state

* y=(y4,..,Yy) isan arbitrary state

SC(s) = Z cost;(s;, S_;)

IEN

S z cost; (y;, 5_;)

LEN \/ Par < aud
= z z (aec - ne(yi,s-i) + be) e & 3
e€EE I[EN:e€y; e

ek, - Ne (;)J)i.\]) + be



Linear congestion games: PoA

* (y;,5_;) differs from s = (s;,5_;) only in the strategy of player i

= N (y;,S_;) < n.(s) + 1 foreveryresourcee € E

SC <) D (@ i

e€EE IEN:e€y;

zzm@gﬁ

eEE LEN: eEyrr
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Linear congestion games: PoA

* (y;,5_;) differs from s = (s;,5_;) only in the strategy of player i

= N (y;,S_;) < n.(s) + 1 foreveryresourcee € E

S D ) (@ ey s-) + be)

e€EE IEN:e€y;

< Z z (ae - (ne(s) +1) +b,)

e€EE IEN:e€cy;

B z e (¥)(@e - (e(s) +1) + be)

eeFE

= ) (@ 1) - (1) + 1) + bno (1)

eek



Linear congestion games: PoA

* For every pair of integersy,§ = 0: y (6 + 1) Sg (572 +6%)

 Sety =n,(y)and§ =n,(s)

SC(s) < ) (ae - ne(@)(e(s) + 1) + bene (7))

eek

< z (ae '%(Sne(}’)z + ne(s)z) + be”e()’))

eek



Linear congestion games: PoA

* For every pair of integersy,§ = 0: y (6 + 1) Sg (572 +6%)

 Sety =n,(y)and§ =n,(s)

SC(s) < ) (ae - ne(@)(e(8) + 1) + bene (7))

eek

< z (ae '%(Sne(}’)z + ne(s)z) + be”e()’))

eek &

5 1 '
= z (§ aene()’)z + bene(y)> + 52 aene(s)z s \DQJ(\/L@(%

eEeE eeE N— T~



Linear congestion games: PoA

* For every pair of integersy,§ = 0: y (6 + 1) S§ (572 +6%)

 Sety =n,.(y)andd§ = n.(s)

SC(s) < ) (ae - () (e(8) + 1) + bene ()

eek

< Z <ae ' %(Sne(y)z + ne(s)z) + bene(y))

eek

1
= z (g aene(y)* + be”e()’)) + gz Aene(8)*
eEE SC (w) eEE S S

5 L A
= §2(aene(y)2 + bene(}L)) + §Z(aene(5)2 + bene(s))

S [ M+ Sy gy L)




Linear congestion games: PoA

* Since
SC) = ) (aene(3)? + bene ()
e€EE
we obtain
SC(s) < 5SC( ) + 1SC( )

s) < =SC(y) +=SC(s

SC(y) ~ 2 V/ oo
* Since this holds for any y, it also holds for sy pr O

T



Can we do any better?

Theorem
The price of anarchy of linear congestion games is at least 5/2

* Toshow alower bound, it suffices to construct a specific instance and
prove that the social cost of the equilibrium is 5/2 times the optimal
social cost



Can we do any better?

X
X % X

Equilibrium: each player i uses two edges to connect z; to t;

Players 1 and 2 (red, blue) have cost 3, while players 3 and 4 (green,
orange) have cost 2

By changing to the direct edge, all players would still have the same
cost, so there is no reason for them to deviate



Can we do any better?

* Optimal: each playeri uses the direct edge between z; and t;
* All players have cost 1
* SC(equilibrium) =10 vs. SC(optimal) = 4 = PoA=5/2
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