
Congestion Games



Example: Network Routing

s t

x

10

• n = 10 players want to travel from s to t

• Each edge e is labeled with its (flow-dependent)
delay function de(x)

Question: What are the pure Nash equilibria here?
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• n = 10 players want to travel from s to t

• Each edge e is labeled with its (flow-dependent)
delay function de(x)

Question: What are the pure Nash equilibria here? (10, 0)
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Example: Network Routing

s t

x

10

9

1

• n = 10 players want to travel from s to t

• Each edge e is labeled with its (flow-dependent)
delay function de(x)

Question: What are the pure Nash equilibria here? (10, 0), (9, 1)
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Example: The El Farol Bar Problem

100 people consider visiting the El Farol Bar on a Thursday night. They all
have identical preferences:

• If 60 or more people show up, it’s nicer to be at home.

• If fewer than 60 people show up, it’s nicer to be at the bar.

Question: What are the pure Nash equilibria here?
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Example: The El Farol Bar Problem

100 people consider visiting the El Farol Bar on a Thursday night. They all
have identical preferences:

• If 60 or more people show up, it’s nicer to be at home.

• If fewer than 60 people show up, it’s nicer to be at the bar.

Question: What are the pure Nash equilibria here? 59 people at the bar.
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Example: Congestion Game

A congestion game is a tuple 〈N,R,A,d 〉, where

• N = {1, . . . , n} is a finite set of players

• R = {1, . . . ,m} is a finite set of resources

• A = A1 × · · · ×An is a finite set of action profiles a = (a1, . . . , an),
with Ai ⊆ 2R \ {∅} being the set of actions available to player i

• d = (d1, . . . , dm) is a vector of delay functions dr : N→ R.

Goal: player i ∈ N chooses a subset of resources ai ∈ Ai

Given an action profile a = (a1, . . . , an), the cost of player i is

ci(a) =
∑
r∈ai

dr(nr(a)) where nr(a) = |{i ∈ N : r ∈ ai}|.

Note: ui(a) = −ci(a) for every i here.
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Modelling the Examples

Congestion Game:

• players N = {1, 2, . . . , 10}
• resources R = {↑, ↓}
• action spaces Ai = {{↑}, {↓}} representing the two routes

• delay functions d↑ : x 7→ x and d↓ : x 7→ 10

El Farol Bar Problem:

• players N = {1, 2, . . . , 100}
• resources R = {�,�1,�2, . . . ,�100}
• action spaces Ai = {{�}, {�i}}
• delay functions d� : x 7→ 1x>60 and d�i

: x 7→ 1
2

Remark: neither example uses the full generality of congestion games
(actions correspond to singleton resource sets only)
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Existence of Pure Nash Equilibria

Good news:

Theorem (Rosenthal, 1973)

Every congestion game has at least one pure Nash equilibrium.

R.W. Rosenthal. A Class of Games Possessing Pure-Strategy Nash Equilibria. Inter-
national Journal of Game Theory, 2(1):65–67, 1973.
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Inefficiency of Equilibria

Prisoner’s Dilemma: Nash equilibria might be suboptimal!

Question: Can we quantify how “bad” Nash equilibria are?

Social cost: define the social cost of strategy profile a as

SC(a) =
∑
i∈N

ci(a)

→ let a∗ be a strategy profile minimizing SC(·) (social optimum)
→ a∗ is best possible outcome if one could coordinate the players

Note: consider social welfare SW =
∑

i ui for utility maximizing players

Idea: measure worst case loss in social cost due to lack of coordination

POA = max
a∈PNE

SC(a)

SC(a∗)

→ termed the price of anarchy by Koutsoupias & Papadimitriou (1999)
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Network Routing Games

n = 10

Si = {↑, ↓}

s t

d↑(x) = x

d↓(x) = 10
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Network Routing Games

n = 10

Si = {↑, ↓}

s t

d↑(x) = x

d↓(x) = 10

10

Nash equilibrium: SC(s) = 10 · 10 = 100
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Network Routing Games

n = 10

Si = {↑, ↓}

s t

d↑(x) = x

d↓(x) = 10

5

5

social optimum: SC(s∗) = 5 · 5 + 5 · 10 = 75
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Network Routing Games

n = 10

Si = {↑, ↓}

s t

d↑(x) = x

d↓(x) = 10

5

5

price of anarchy: SC(s)
SC(s∗) =

100
75 = 4

3
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Price of Anarchy for Congestion Games

Good news:

• POA is independent of the network structure
• POA depends on the class of delay functions
→ POA = 5

2 for affine functions (proof on next slide)
→ POA = O(1) for quadratic, cubic, . . . functions

Bad news:

• POA increases with the “steepness” of delay functions
• in general: unbounded!
• even worse: unbounded for practically relevant delay functions
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POA for Congestion Games

Theorem

The price of anarchy of congestion games with affine delay functions is 5
2 .

Proof: All delay functions are of the form dr(x) = px+ q with p, q ∈ Z≥0.
Can assume wlog that dr(x) = x ∀r (think about it!).
Let a be a PNE and let a∗ be a social optimum. We have

SC(a) =
∑
i

ci(ai,a−i) ≤
∑
i

ci(a
∗
i ,a−i) =

∑
i

∑
r∈a∗

i

dr(nr(a
∗
i ,a−i))

=
∑
i

∑
r∈a∗

i

nr(a
∗
i ,a−i) ≤

∑
i

∑
r∈a∗

i

(nr(a) + 1)

=
∑
r∈R

(nr(a) + 1)
∑

i:r∈a∗
i

1 =
∑
r∈R

nr(a
∗)(nr(a) + 1)

≤ 5

3

∑
r∈R

(nr(a
∗))2 +

1

3

∑
r∈R

(nr(a))
2 =

5

3
SC(a∗) +

1

3
SC(a)

Georgios Amanatidis Social Networks & Online Markets 2020 17

See proof at the end!



Tight Example

Instance:

• N = [3]

• R = R1 ∪R2, where R1 = {h1, h2, h3} and R2 = {g1, g2, g3}
• delay function dr(x) = x for every r ∈ R

• each player i has two strategies: {hi, gi} and {hi−1, hi+1, gi+1}
(modulo 3).

Social optimum: every player selects his first strategy: SC(a∗) = 6

Nash equilibrium: every player chooses his second strategy:
SC(a) =

∑
i ci(a) = 3 · 5 = 15
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Unbounded POA

In general, POA for congestion games is unbounded.

Question: Can we improve the POA?
→ natural idea: infrastructure improvement (add new edges)
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Braess Paradox

n = 10

s

u

v

t

de(x) = x

10

10

x
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Braess Paradox

n = 10

s

u

v

t

de(x) = x

10

10

x

5

5

player’s delay: 15
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Braess Paradox

n = 10

s

u

v

t

de(x) = x

10

0

10

x
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Braess Paradox

n = 10

s

u

v

t

de(x) = x

10

0

10

x

player’s delay: increases(!) to 20

10
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Price of Anarchy

So: In a congestion game, the natural better-response dynamics will always
lead us to a pure NE. Nice. But: How good is that equilibrium?
Recall our traffic congestion example:

s t

x

10

10 people overall
top delay = # on route
bottom delay = 10 minutes

If x 6 10 players use top route, social welfare (sum of utilities) is:

sw(x) = −[x · x+ (10− x) · 10] = −[x2 − 10x+ 100]

This function is maximal for x = 5 and minimal for x = 0 and x = 10.
In equilibrium, 9 or 10 people will use the bottom route (10 is worse).

The so-called price of anarchy of this game is: sw(10)
sw(5) = −100

−75 = 4
3 .

Thus: not perfect, but not too bad either (for this example).
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Braess’ Paradox

Something to think about. 10 people have to get from s to t:

s

u

v

t

x 10

10 x

0

If the delay-free link from u to v is not present:

• In equilibrium, 5 people will use the top route s–u–t and 5 people the
bottom route s–v–t. Everyone will take 15 minutes.

Now, if we add the delay-free link from u to v, this happens:

• In the worst equilibrium, everyone will take the route s–u–v–t and take
20 minutes! (Other equilibria are only slightly better.)
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Price of Anarchy for 
Linear/Affine Congestion Games

Based on slides by A. Voudouris

1



• Recall that a state 𝒔 = (𝑠1, … , 𝑠𝑛) is an equilibrium if for each player 𝑖
the strategy 𝑠𝑖 minimizes her personal cost, given the strategies of 
the other players

• 𝒔−𝑖 = (𝑠1, … , 𝑠𝑖−1, 𝑠𝑖+1, … , 𝑠𝑛)

• 𝒔 is an equilibrium if for each player i, the strategy 𝑠𝑖 is such that 
cost𝑖(𝑦, 𝒔−𝑖) is minimized for 𝑦 = 𝑠𝑖

• Alternatively, for every possible strategy 𝑦 of player 𝑖:

• We have one such inequality for every player

A general technique for PoA bounds

cost𝑖 𝑠𝑖 , 𝒔−𝑖 ≤ cost𝑖(𝑦, 𝒔−𝑖)



• By adding these inequalities, we get

• We can get an upper bound of 𝜆 on the price of anarchy if there exists 
a strategy 𝑦𝑖 for every player 𝑖 such that

• The goal is to pinpoint the strategy 𝑦𝑖 for each player 𝑖, which will  
allow us to prove an inequality like this

A general technique for PoA bounds

SC 𝒔 = ෍

𝑖∈𝑁

cost𝑖 𝑠𝑖 , 𝒔−𝑖 ≤ ෍

𝑖∈𝑁

cost𝑖 𝑦, 𝒔−𝑖

෍

𝑖∈𝑁

cost𝑖 𝑦𝑖 , 𝒔−𝑖 ≤ 𝜆 ⋅ SC(𝒔𝑂𝑃𝑇)



• 𝒔 = (𝑠1, … 𝑠𝑛) is an equilibrium state

• 𝒚 = (𝑦1, … , 𝑦𝑛) is an arbitrary state

Linear congestion games: PoA

Theorem
The price of anarchy of linear congestion games is at most 5/2

SC 𝒔 = ෍

𝑖∈𝑁

cost𝑖 𝑠𝑖 , 𝒔−𝑖

≤ ෍

𝑖∈𝑁

cost𝑖 𝑦𝑖 , 𝒔−𝑖

= ෍

𝑒∈𝐸

෍

𝑖∈𝑁:𝑒∈𝑦𝑖

(𝑎𝑒 ⋅ 𝑛𝑒 𝑦𝑖 , 𝒔−𝑖 + 𝑏𝑒)



• (𝑦𝑖 , 𝒔−𝑖) differs from 𝒔 = (𝑠𝑖 , 𝒔−𝑖) only in the strategy of player 𝑖

⇨ 𝑛𝑒 𝑦𝑖 , 𝒔−𝑖 ≤ 𝑛𝑒(𝒔) + 1 for every resource 𝑒 ∈ 𝐸

Linear congestion games: PoA

SC 𝒔 ≤ ෍

𝑒∈𝐸

෍

𝑖∈𝑁:𝑒∈𝑦𝑖

(𝑎𝑒 ⋅ 𝑛𝑒 𝑦𝑖 , 𝒔−𝑖 + 𝑏𝑒)

≤ ෍

𝑒∈𝐸

෍

𝑖∈𝑁:𝑒∈𝑦𝑖

(𝑎𝑒 ⋅ (𝑛𝑒 𝒔 + 1) + 𝑏𝑒)

= ෍

𝑒∈𝐸

𝑛𝑒 𝒚 (𝑎𝑒 ⋅ (𝑛𝑒 𝒔 + 1) + 𝑏𝑒)

= ෍

𝑒∈𝐸

𝑎𝑒 ⋅ 𝑛𝑒 𝒚 ⋅ 𝑛𝑒 𝒔 + 1 + 𝑏𝑒𝑛𝑒 𝒚



• (𝑦𝑖 , 𝒔−𝑖) differs from 𝒔 = (𝑠𝑖 , 𝒔−𝑖) only in the strategy of player 𝑖
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𝑒∈𝐸

෍

𝑖∈𝑁:𝑒∈𝑦𝑖
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3
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3
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෍

𝑒∈𝐸
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3
෍

𝑒∈𝐸
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• For every pair of integers 𝛾, 𝛿 ≥ 0: 𝛾 𝛿 + 1 ≤
1

3
(5𝛾2 + 𝛿2)
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• Since

we obtain

• Since this holds for any 𝒚, it also holds for 𝒔𝑂𝑃𝑇 ▢

Linear congestion games: PoA

SC 𝒔 ≤
5

3
SC 𝒚 +

1

3
SC 𝒔

⇒
SC(𝒔)

SC(𝒚)
≤

5

2

SC 𝒚 = ෍

𝑒∈𝐸

𝑎𝑒𝑛𝑒 𝒚 2 + 𝑏𝑒𝑛𝑒 𝒚



• To show a lower bound, it suffices to construct a specific instance and 
prove that the social cost of the equilibrium is 5/2 times the optimal 
social cost

Can we do any better?

Theorem
The price of anarchy of linear congestion games is at least 5/2



• Equilibrium: each player 𝑖 uses two edges to connect 𝑧𝑖 to 𝑡𝑖

• Players 1 and 2 (red, blue) have cost 3, while players 3 and 4 (green, 
orange) have cost 2

• By changing to the direct edge, all players would still have the same 
cost, so there is no reason for them to deviate

Can we do any better?

𝑧1, 𝑧2

𝑧4, 𝑡2, 𝑡3

𝑧3, 𝑡1, 𝑡4

𝑥

𝑥0
𝑥𝑥

0



• Optimal: each player 𝑖 uses the direct edge between 𝑧𝑖 and 𝑡𝑖

• All players have cost 1

• SC(equilibrium) = 10 vs. SC(optimal) = 4 ⇨ PoA = 5/2

▢

Can we do any better?

𝑧1, 𝑧2

𝑧4, 𝑡2, 𝑡3

𝑧3, 𝑡1, 𝑡4

𝑥

𝑥0
𝑥𝑥

0
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